第76章 对火星轨道变化问题的最后解释(9/14)
rey-scalediagramasfig.5,whichshowsthevariationofperiodicityintheeccentricityandinclinationofearthinn+2integration.infig.5,thedarkareashowsthatatthetimeindicatedbythevalueontheabscissa,theperiodicityindicatedbytheordinateisstrongerthaninthelighterareaaroundit.wecanrecognizefromthismapthattheperiodicityoftheeccentricityandinclinationofearthonlychangesslightlyovertheentireperiodcoveredbythen+2integration.thisnearlyregulartrendisqualitativelythesameinotherintegrationsandforotherplanets,althoughtypicalfrequenciesdifferplanetbyplanetandelementbyelement.
4.2long-termexchangeoforbitalenergyandangularmomentum
wecalculateverylong-periodicvariationandexchangeofplanetaryorbitalenergyandangularmomentumusingfiltereddelaunayelementsl,g,h.gandhareequivalenttotheplanetaryorbitalangularmomentumanditsverticalcomponentperunitmass.lisrelatedtotheplanetaryorbitalenergyeperunitmassase=?μ22l2.ifthesystemiscompletelylinear,theorbitalenergyandtheangularmomentumineachfrequencybinmustbeconstant.non-linearityintheplanetarysystemcancauseanexchangeofenergyandangularmomentuminthefrequencydomain.theamplitudeofthelowest-frequencyoscillationshouldincreaseifthesystemisunstableandbreaksdowngradually.however,suchasymptomofinstabilityisnotprominentinourlong-termintegrations.
infig.7,thetotalorbitalenergyandangularmomentumofthefourinnerplanetsandallnineplanetsareshownforintegrationn+2.theupperthreepanelsshowthelong-periodicvariationoftotalenergy(denotedase-e0),totalangularmomentum(g-g0),andtheverticalcomponent(h-h0)oftheinnerfourplanetscalculatedfromthelow-passfiltereddelaunayelements.e0,g0,h0denotetheinitialvaluesofeachquantity.theabsolutedifferencefromtheinitialvaluesisplottedinthepanels.thelowerthreepanelsineachfigureshowe-e0,g-g0andh-h0ofthetotalofnineplanets.thefluctuationshowninthelowerpanelsisvirtuallyentirelyaresultofthemassivejovianplanets.
comparingthevariationsofenergyandangularmomentumoftheinnerfourplanetsandallnineplanets,itisapparentthattheamplitudesofthoseoftheinnerplane
4.2long-termexchangeoforbitalenergyandangularmomentum
wecalculateverylong-periodicvariationandexchangeofplanetaryorbitalenergyandangularmomentumusingfiltereddelaunayelementsl,g,h.gandhareequivalenttotheplanetaryorbitalangularmomentumanditsverticalcomponentperunitmass.lisrelatedtotheplanetaryorbitalenergyeperunitmassase=?μ22l2.ifthesystemiscompletelylinear,theorbitalenergyandtheangularmomentumineachfrequencybinmustbeconstant.non-linearityintheplanetarysystemcancauseanexchangeofenergyandangularmomentuminthefrequencydomain.theamplitudeofthelowest-frequencyoscillationshouldincreaseifthesystemisunstableandbreaksdowngradually.however,suchasymptomofinstabilityisnotprominentinourlong-termintegrations.
infig.7,thetotalorbitalenergyandangularmomentumofthefourinnerplanetsandallnineplanetsareshownforintegrationn+2.theupperthreepanelsshowthelong-periodicvariationoftotalenergy(denotedase-e0),totalangularmomentum(g-g0),andtheverticalcomponent(h-h0)oftheinnerfourplanetscalculatedfromthelow-passfiltereddelaunayelements.e0,g0,h0denotetheinitialvaluesofeachquantity.theabsolutedifferencefromtheinitialvaluesisplottedinthepanels.thelowerthreepanelsineachfigureshowe-e0,g-g0andh-h0ofthetotalofnineplanets.thefluctuationshowninthelowerpanelsisvirtuallyentirelyaresultofthemassivejovianplanets.
comparingthevariationsofenergyandangularmomentumoftheinnerfourplanetsandallnineplanets,itisapparentthattheamplitudesofthoseoftheinnerplane
本章未完,点击下一页继续阅读