第404节(2/2)

投票推荐 加入书签 留言反馈

在场的这些大佬中,大部分都出自专业科班,只有法拉第是个学徒出身的‘九漏鱼’。
    虽然后来恶补了许多知识,但数学依旧是这位电磁大佬的一个弱项。
    不过令徐云微微放松的是。
    这位电磁学大佬的表情没什么波动,看来暂时还没有掉队。
    于是徐云继续开始了推导。
    “也就是说,只要有一个函数满足f(x,t)=f(x-vt,0),满足任意时刻的形状都等于初始形状平移一段,那么它就表示一个波。”
    “这是纯数学上的描述,但这还不够,我们还需要从物理的角度进行一些分析。”
    “比如……张力。”
    众所周知。
    一根绳子放在地上的时候是静止不动的,我们甩一下就会出现一个波动。
    那么问题来了:
    这个波是怎么传到远方去的呢?
    我们的手只是拽着绳子的一端,并没有碰到绳子的中间,但是当这个波传到中间的时候绳子确实动了。
    绳子会动就表示有力作用在它身上,那么这个力是哪里来的呢?
    答案同样很简单:
    这个力只可能来自绳子相邻点之间的相互作用。
    每个点把自己隔壁的点“拉”一下,隔壁的点就动了——就跟我们列队报数的时候只通知你旁边的那个人一样,这种绳子内部之间的力就叫张力。
    又比如我们用力拉一根绳子,我明明对绳子施加了一个力,但是这根绳子为什么不会被拉长?
    跟我的手最近的那个点为什么不会被拉动?
    答案自然是这个点附近的点,给这个质点施加了一个相反的张力。
    这样这个点一边被拉,另一边被它邻近的点拉,两个力的效果抵消了。
    但是力的作用又是相互的,附近的点给端点施加了一个张力,那么这个附近的点也会受到一个来自端点的拉力。
    然而这个附近的点也没动,所以它也必然会受到更里面点的张力。
    这个过程可以一直传播下去,最后的结果就是这根绳子所有的地方都会张力。
    通过上面的分析,便可以总结出一个概念:
    当一根绳子静止在地面的时候,它处于松弛状态,没有张力。
    但是当一个波传到这里的时候,绳子会变成一个波的形状,这时候就存在张力了。
    正是这种张力让绳子上的点上下振动,所以,分析这种张力对绳子的影响就成了分析波动现象的关键。
    接着徐云又在纸上写下了一个公式:
    f=ma。
    没错。

章节目录