第646节(2/2)

投票推荐 加入书签 留言反馈

广泛运用,并在15年后成功脱离实验室,出现在了重力梯度仪上。
    但是……
    这么一句简单的描述背后,蕴藏着的是无数前人的汗水,以及超高的制备难度。
    铷原子如此,孤点粒子同样如此。
    孤点粒子想要取代铷原子在重力梯度仪的位置……或者直白点说,要让孤点粒子具备适配重力梯度仪的可能性,徐云就必须要解决一个最最最基础的问题:
    怎么搞出像铷原子一样的量子态?
    做不到这一步,那么一切都是空谈。
    潘院士也绝不可能同意徐云的立项。
    换而言之……
    潘院士提出的这个问题,也算是某种程度上的‘面试’。
    “形成量子态?”
    徐云昨天和赵政国聊完立项的想法后,在夜里便对实操环节进行了思考。
    虽然依旧有很多问题没有结果,但对于量子态这种必须跨越的门槛多少还是有了些解决方案:
    “老师,我的想法是这样的。”
    “我们可以在设备上放置一个塞曼减速器,通过一个反向传播的激光束与微粒进行共振跃迁。”
    “如此便能初步筛选出合适的孤点粒子,并且确定它在每个能级的粒子数分布。”
    “接着按照玻色统计理论,我们知道每个能级的粒子数分布之后,可以利用态密度把求和转化为积分来计算总的粒子数。”
    “接着便是……轨道耦合。”
    “目前咱们国内在一维人工自旋轨道耦合已经有了一定成果,所以如果能完成孤点离子在二维以上的自旋轨道耦合,我认为完成量子态应该不成问题。”
    潘院士手指敲击桌子的频率逐渐放慢,最后陷入了沉思。
    早先提及过。
    所谓波色-爱因斯坦凝聚,便是将原来不同状态的原子突然“凝聚”到同一基态。
    而这种基态,实际上就是量子态。
    因此超冷原子的物理研究,有相当多属于量子……或者说潘院士的研究领域。
    例如徐云提到的自旋轨道耦合。
    在超冷原子中实现人工自旋轨道耦合并研究新奇量子物态,这是目前超冷原子物理最重大的前沿课题之一。
    在2016年的时候。
    科大就曾经和北大理论组合作,提出并构建了二维拉曼耦合光晶格,实现了二维自旋轨道耦合拓扑量子气。
    不久前。
    北大物理量材中心的刘雄军教授,还在原二维系统的基础上,提出了三维自旋轨道耦合和理想外尔半金属的新型拉曼光晶格方案,并且发表在了《科学》上(doi:10.1126/science.abc0105)
    话说回来。
    潘院士还是那篇论文的通讯作者呢。
    因此他很清楚……

章节目录