第843节(1/2)

投票推荐 加入书签 留言反馈

    众所周知。
    对于一个经典的由n个质点所构成的力学系统,它的广义坐标可定义为qi(i=1,2,……,n)。
    其中n=3n为广义坐标空间的维数。
    这时候呢。
    系统的拉氏函数定义为:
    l=l(qi,q˙i)……,这道公式标注为1。
    而对于场Ψ,则它的拉氏密度函数l可定义为:
    l=l(Ψ,αμΨ)……标注为2。
    且拉氏密度函l是一个标量,其中场Ψ可以是一个标量、旋量、矢量或张量。
    因此在弯曲时空中,一般物质场(引力场除外)的拉氏密度应该可以写成:
    l=l(Ψ,▽μΨ)……标注为3。
    对于微观系统,一般还不需要考虑引力,所以估且只关心2式。
    由2式得场的拉氏函数为:
    l=∫l(Ψ,αμΨ)d3x
    =∫l(Ψ,▽Ψ,1cαtΨ)d3x
    =∫l(Ψ,1cΨ˙)d3x……把它标注为4。
    没错。
    看到这里。
    想必很多同学已经看明白了。
    这个公式的意思很清晰:
    可以理解成把空间分割成一个个的容积为dv的小方盒,其中编号为i小方盒中场的平均值为Ψi,并令qi=Ψidv。
    则(4)式可以写成形如(1)式的形式:
    l=l(qi,q˙i)。
    如此一来。
    场量Ψ的物理意义才相当于(1)式中的广义坐标,也就是构筑出了一个系统,才能正式进行后续演算。
    依旧非常简单,也非常好理解。
    唰唰唰——
    这次徐云的推导过程没有依靠计算机,而是用手写进行着运算。
    毕竟很多时候比起键盘,手写更容易进入状态。
    更何况狄利克雷虽然在数学史上的排名只有20名出头,但他的计算能力却可以进入前十:
    在当初的冥王星之夜中,狄利克雷负责的就是银经偏差值计算。(为啥昨天还有人说徐云没见过狄利克雷呢……脑袋伸过来我给你个buff)
    因此此时此刻。
    徐云可谓是真正的下笔如有“神”。
    “qi相对应的正则动量是pi=αlαq˙i……于是可定义正则动量密度为π(r,t)=αlα(αtΨ)……”
    “所以系统的哈密顿量为h=∫(π(r,t)αtΨ-l)d3x……”
    “将‘冥王星’微粒看做类似于质点的情形,对于场,其算符则有以下基本对易关系,[π^(r,t),φ^(r′,t)]=-ihδ3(r-r′)……以及[π^(r,t),π^(r′,t)]=[φ^(r,t),φ^(r′,t)]=0……”
    “因此其自由实标量场φ的拉氏密度函数为l=-12ημναμφανφ-12m^2c^2h^2φ^2=12c^2αtφ^2-12(▽φ)^2-12m^2c2h^2φ^2……”
    一行行的公式被徐云写下。
    他对面的周绍平也没闲着,主动做起了自旋角动量算符及其对易关系与泡利矩阵的工作。
    “[s^i,s^j]=ieij ks^k……”
    “令{s^+=s^x+is^ys^-=s^x-is^y……”
    “则得:[s^+,s^-]=(s^x+is^y)(s^x-is^y)-(s^x-is^y)(s^x+is^y)=i(s^ys^x-s^xs^y)+i(s^ys^x-s^xs^y)=2i[s^y,s^x]=2i(-is^z)=2s^z……”
    指尖与演算纸的接触声,在此时意外的有些动听,像是在演奏着特殊旋律的交响乐。
    在此前决定分开计算后。
    大卫·格罗斯、波利亚科夫、尼玛、希格斯、特胡夫特等人也都召开助理和帮手,组起了一个演算小组。
    每个小组最少由两人组成,多的有三个,希格斯的团队则有四人。
    每个团队的计算内容都是一致的,也就是多个小组共同进行计算,最后比对结果,以此避免因为错误影响推算。
    同时为了方便观众观看,几大直播平台也很贴心的给出了对应小组的直播视角。
    这种事儿在2023年很常见。
    比如游戏会有选手视角,体育比赛会有多机位等等……
    在某讯平台的篮球比赛里,甚至还有饮水机视角,堪称杀人诛心。
    而在这几大视角中。
    作为代表着东道主登场的计算小组,周绍平和徐云受到的关注度也是最高的。
    目前周绍平这组的人气要远高于特胡夫特等人,甚至连威腾这个主人公都比不上,乃是当之无愧的热门视角。
    关注度高,反过来也促使了摄像师会重点关注周绍平和徐云二人。
    例如此时此刻。
    直播后台特意将徐云他们的画面,再次分成了精细的两组镜头。
    一组比较正常,囊括了徐云二人所坐区域的画面,也就是大家认知的标

本章未完,点击下一页继续阅读


章节目录