第845节(2/2)

投票推荐 加入书签 留言反馈

 “所以除了占有数算符外,他们必须要计算出一个经过偶数次置换的模量平方算符。”
    陈珊珊眨了眨眼:
    “模量平方算符?”
    张晗肯定的点了点头:
    “是的。”
    与此同时。
    台下一直在关注着徐云进度的陆朝阳,也在纸上写下了模量平方算符这几个字,并且画了个圈。
    没错。
    在计算出占有数算符后。
    徐云和周绍平的下一个环节,就是得把‘冥王星’粒子的模量平方算符给计算出来。
    或者准确点说就是……
    角动量。
    上辈子是粒子的同学应该知道。
    谈论某个粒子的性质,其实就是在谈论这个粒子的场的拉氏量有什么样的特征。
    这样一来呢。
    就可以把粒子性质分为两种:
    靠拉氏量就能体现出的特征,以及由相互作用体现出的粒子特征。
    其中通过相互作用才能体现出的粒子性质有很多了,比如最具代表性的就是电荷这个概念。
    所谓的电荷,其实就是复场的u(1)对称性导出的诺特荷。
    当考虑u(1)对称性的定域化,就要引入某个无质量矢量场来与这个复场相互作用。
    如果这个无质量矢量场是电磁场,则上述的诺特荷就被诠释为了电荷。
    至于自由粒子拉氏量能直接体现出的粒子性质就比较少了,拢共只有两种。
    一是粒子的质量,这由拉氏量中Φ^2项的系数给出。
    二是粒子的自旋,这可以由拉氏量在空间转动变换下的诺特流给出。
    对于‘冥王星’微粒来说。
    目前包括徐云和威腾在内,没人任何人能够计算出它粒子的质量——因为信息不足。
    但自旋就不一样了。
    粒子物理里头有句烂大街的话,就是自旋是粒子的内禀属性。
    内禀是个啥意思呢?
    在电视剧里警察审讯一个人的时候,大家应该多多少少都听过这样一句话:
    “xxx,你的秉性其实是不坏的,只是缺乏正确的引导罢了,进去以后好好改造,争取出来做个好人。”

章节目录